

The Bracket Strategy

This strategy will show students how common denominators are actually found. This strategy should be done with fraction bars.

<u>Step 2</u> Fill in the bracket with multiples of each fraction.

X	1	2	3	4	
<u>5</u> 6	<u>5</u> 6	$\frac{10}{12}$	15 18	<u>20</u> 24	
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{2}{8}$	$\frac{3}{12}$	$\frac{4}{16}$	

<u>Step 3</u> Look for common denominators between the two fractions

X	1	2	3	4	
<u>5</u> 6	<u>5</u> 6	$\frac{10}{12}$	15 18	<u>20</u> 24	
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{2}{8}$	$\frac{3}{12}$	$\frac{4}{16}$	

 $\underline{Step 4}$ Now the fractions can be compared, ordered, added , or subtracted.

$\frac{5}{6}$	=	$\frac{10}{12}$
$\frac{1}{4}$	=	$\frac{3}{12}$

Adding Fraction with Unlike Denominators

6

Subtracting Fractions with Unlike Denominators

 $\frac{Step 3}{Simplify}$ Check for improper fractions and

<u>Step 4</u> Record your answer

Adding Mixed Numbers with Like Denominators

<u>Step 2</u> Add the whole numbers

Step 3 Add the fractions

$$\frac{4}{-} + \frac{4}{-} = \frac{8}{-}$$
9 9 9 9

*Remember that the denominators are not added

<u>Step 4</u> Add whole number and the fraction

$$10 + \frac{8}{9} = 10 \frac{8}{9}$$

Simplify the fractions if possible. 8 / 9 cannot be simplified.

Adding Mixed Numbers with Unlike Denominators

Adding Mixed Numbers

Strategy 2

 $\underline{Step 1}$ Look at the problem

<u>Step 2</u> Change the mixed numbers to improper fractions

$$4\frac{1}{5}$$
 + $2\frac{3}{5}$

*Notice that 3 / 5 **cannot** be subtracted from 1 / 5.

$$4 \frac{1}{5} = \frac{21}{5} + 2 \frac{3}{5} = \frac{13}{5}$$

<u>Step 3</u> Add the improper fractions

$$\frac{21}{5} + \frac{13}{5} = \frac{34}{5}$$

<u>Step 4</u> Change to a mixed number and simplify the fraction if possible.

$$\frac{34}{5} = 6 \frac{4}{5}$$
 *4/5 cannot be simplified

Subtracting Mixed Numbers Strategy 1

<u>Step 1</u> Look at the problem $4 \frac{1}{5} - 2 \frac{3}{5}$

*Notice that 3 / 5 **cannot** be subtracted from 1 / 5.

<u>Step 3</u> Rename the mixed number and subtract

Subtracting Mixed Numbers Strategy 2

<u>Step 1</u> Look at the problem

<u>Step 2</u> Change the mixed numbers to improper fractions

$$4 \frac{1}{5} - 2 \frac{3}{5}$$

*Notice that 3 / 5 **cannot** be subtracted from 1 / 5.

4	<u>1</u> =	21
•	5	5
-2	$\frac{3}{5} =$	$\frac{13}{5}$

<u>Step 3</u> Subtract the improper fractions

21	13	8
	—	= —
5	5	5

<u>Step 4</u> Change to a mixed number and simplify the fraction if possible.

$$1 \quad \frac{3}{5} \qquad *3 / 5 \text{ cannot be simplified}$$

Multiplying Mixed Numbers Str

<u>Step 3</u> Add up all of the products

Step 3 Bring it all to	ogether	and	l sim	plify
$9\frac{40}{2} = 9 + 1$	13	_	0	13
$\delta \frac{1}{27} - \delta + 1$	27	_	9	27

Multiplying Mixed Numbers

Strategy 2

<u>Step 2</u> Multiply each whole number and fraction

X	3	5 9
2	$2 \ge 3 = 6$	$\underline{2} \ge \frac{5}{9} = \frac{10}{9}$
		or 1 1/9
$\frac{2}{3}$	<u>2/3</u> x <mark>3</mark> = 6/3 or 2	<u>2/3</u> x <mark>5/9</mark> = 10/27

<u>Step 3</u> Add the partial products which includes whole numbers and fractions

<u>Step 4</u> Simplify is possible and record the answer

9 $\frac{19}{27}$

The answer cannot be simplified.

Multiplying Mixed Numbers Strategy 3

<u>Step 1</u> Look at the problem

 $4 \frac{1}{5} \times 2 \frac{3}{7}$

<u>Step 2</u> Change the mixed numbers to improper fractions

$$4 \frac{1}{5} = \frac{21}{5}$$
$$2 \frac{3}{7} = \frac{17}{7}$$

<u>Step 3</u> Multiply the improper fractions

$$\frac{21}{5} \times \frac{17}{7} = \frac{357}{35}$$

<u>Step 4</u> Change to a mixed number and simplify the fraction if possible

$$\frac{357}{35} = 10 \frac{7}{35} = 10 \frac{1}{5}$$

Dividing Fractions

<u>Step 3</u> Multiply the fractions

<u>Step 4</u> Simplify the fraction if possible.

$$\frac{1}{5}$$
 x $\frac{7}{3}$ = $\frac{7}{15}$

*
$$\frac{7}{15}$$
 cannot be simplified

7

15

Dividing Mixed Numbers

<u>Step 3</u> Find the reciprocal of the second fraction (divisor) and multiply

<u>Step 4</u> Simplify the fraction if possible.

$$\frac{16}{5} \times \frac{7}{24} = \frac{112}{120}$$
The reciprocal of $\frac{24}{7}$ is $\frac{7}{24}$

112		112		17
	=	—	=	—
120		120		20

*1 / 5 **cannot** be simplified