$$
\begin{aligned}
& \text { (6) } \\
& \text { WNTG/ }
\end{aligned}
$$

The Bracket Strategy

This strategy will show students how common denominators are actually found. This strategy should be done with fraction bars.
Step 1 Create a bracket

Step 3 Look for common denominators between the two fractions

Step 2 Fill in the bracket with multiples of each fraction.

\mathbf{X}	1	2	3	4
$\frac{5}{6}$	$\frac{5}{6}$	$\frac{10}{12}$	$\frac{15}{18}$	$\frac{20}{24}$
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{2}{8}$	$\frac{3}{12}$	$\frac{4}{16}$

Step 4 Now the fractions can be compared, ordered, added , or subtracted.

$$
\begin{aligned}
& \frac{5}{6}=\frac{10}{12} \\
& \frac{1}{4}=\frac{3}{12}
\end{aligned}
$$

Adding Fraction with Unlike Denominators

Step 1 Look at the problem

$\frac{4}{-}$	+
3	

*Notice the denominators are not the same
$\underline{\text { Step } 2}$ Find a common denominator and add
$\frac{4}{-}+\frac{2}{3}+\frac{12}{24}=$
$\frac{4 \times 3}{8 \times 3}=\frac{12}{24}$

$\frac{2 \times 8}{3 \times 8}=\frac{16}{24}$$\quad$| Students can use the bracket |
| :--- |
| strategy for this step. |

Step 3 Check for improper fractions and simplify
$\frac{28}{24}=1 \frac{4}{24} \quad$ Simplify $\quad 1 \frac{1}{6}$
This is an improper fraction and should be written a mixed number.

Step 4 Record your answer
$\frac{4}{8}+\frac{2}{3}=1 \frac{1}{6}$

Subtracting Fractions with Unlike Denominators

Step 1 Look at the problem

5		
-	-	$\frac{1}{4}$

*Notice the denominators are not the same

Step 2 Find a common denominator and subtract

and subtract

Step 3 Check for improper fractions and simplify
$\frac{7}{12} \quad$ You cannot simplify!

Step 4 Record your answer
$\frac{5}{6} \quad-\quad \frac{1}{4}=\frac{7}{12}$

Adding Mixed Numbers with Like Denominators

Step 1 Look at the problem

*Notice the denominators are the same

Step 3 Add the fractions

*Remember that the denominators are not added
$\underline{\text { Step } 2}$ Add the whole numbers
$3 \frac{4}{9}$
$+74$

10

Step 4 Add whole number and the fraction

$$
10+\frac{8}{9}=10 \frac{8}{9}
$$

Simplify the fractions if possible. $8 / 9$ cannot be simplified.

Adding Mixed Numbers with Unlike Denominators

Step 1 Look at the problem
$2 \frac{3}{9}+5 \frac{3}{8}$
*Notice the denominators are the same
$\frac{\text { Step } 3}{\text { and add }}$ Find a common denominator
$\frac{3}{9}+\frac{3}{8}$
$\frac{3 \times 8}{9 \times 8}=\frac{27}{72}$
$\frac{3 \times 9}{72}=\frac{27}{72}$
$\frac{3 \times 9}{8 \times 9}$

Step 2 Add the whole numbers

$$
\begin{array}{r}
2 \frac{3}{9} \\
+\quad 5 \frac{3}{8} \\
\hline 7
\end{array}
$$

Step 4 Add whole number and the fraction

$$
\begin{aligned}
& 7+\frac{54}{72}=7 \frac{54}{72}=7 \frac{3}{4} \\
& \text { Simplify the fractions if possible. } \\
& \qquad \frac{54 / 18}{72 / 18}=\frac{3}{4}
\end{aligned}
$$

Adding Mixed Numbers

Strategy 2

Step 1 Look at the problem

$$
4 \frac{1}{5}+2 \frac{3}{5}
$$

*Notice that $3 / 5$ cannot be subtracted from $1 / 5$.

Step 3 Add the improper fractions

$$
\frac{21}{5}+\frac{13}{5}=\frac{34}{5}
$$

Step 2 Change the mixed numbers to improper fractions

$$
\begin{array}{r}
4 \frac{1}{5}=\frac{21}{5} \\
+2 \frac{3}{5}=\frac{13}{5}
\end{array}
$$

Step 4 Change to a mixed number and simplify the fraction if possible.

$$
\frac{34}{5}=6 \frac{4}{5}
$$

Subtracting Mixed Numbers Strategy 1

Step 1 Look at the problem

$$
4 \frac{1}{5}-2 \frac{3}{5}
$$

*Notice that 3 / 5 cannot be subtracted from $1 / 5$.

Step 3 Rename the mixed number and subtract
$3 \frac{6}{5}$

- $2 \frac{3}{5}$
$1 \frac{3}{5}$
5

Step 2 Borrow from the whole number

$$
\begin{array}{r}
4 \frac{1}{5}=\frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{1}{5} \\
-2 \frac{3}{5}
\end{array}
$$

Step 4 Simplify the fractions if possible.

$1 \frac{3}{5} \quad * 3 / 5$ cannot be simplified

Subtracting Mixed Numbers Strategy 2

Step 1 Look at the problem

$4 \frac{1}{5}-2 \frac{3}{5}$

*Notice that 3 / 5 cannot be subtracted from $1 / 5$

Step 3 Subtract the improper fractions

$$
\frac{21}{5}-\frac{13}{5}=\frac{8}{5}
$$

Step 2 Change the mixed numbers to improper fractions

$$
\begin{array}{r}
4 \frac{1}{5}=\frac{21}{5} \\
-2 \frac{3}{5}=\frac{13}{5}
\end{array}
$$

Step 4 Change to a mixed number and simplify the fraction if possible.
$1 \frac{3}{5}$
*3 / 5 cannot be simplified

Multiplying Mixed Numbers

 Strategy 1Step 1 Adjust the problem
$2 \frac{2}{3} \times 3 \frac{5}{9} \longrightarrow$
$\left(2+\frac{2}{3}\right) \times\left(3+\frac{5}{9}\right)$

Step 2 Multiply

Step 3 Add up all of the products

$6+2+\frac{10}{9}+\frac{10}{27}$| $\frac{10 \times 3=30}{9 \times 3=27}$ |
| :--- |
| Find a common
 denominator |
| $\frac{30}{27}+\frac{10}{27}=\frac{40}{27}$ |
| $8+\frac{40}{27}$ |

$$
8 \frac{40}{27}=8+1 \frac{13}{27}=9 \frac{13}{27}
$$

Multiplying Mixed Numbers

Step 1 Create the area model boxes and fill in numbers.

Step 2 Multiply each whole number and fraction

x	3	$\frac{5}{9}$
2	$\underline{2} \times 3=6$	$\begin{gathered} \underline{2} \times 5 / 9=10 / 9 \\ \text { or } 11 / 9 \end{gathered}$
$\frac{2}{3}$	$\underline{2 / 3} \times 3=6 / 3$ or 2	$\underline{2 / 3} \times 5 / 9=10 / 27$

Step 3 Add the partial products which includes whole numbers and fractions

6	Remember: The last fraction will be the common denominator.
2	$=\frac{3}{27}$
$+\quad \frac{2}{9}=\frac{6}{27}$	
9	$\frac{10}{27}=\frac{10}{27}$

Step 4 Simplify is possible and record the answer $9 \frac{19}{27}$

The answer cannot be simplified.

Multiplying Mixed Numbers Strategy 3

Step 1 Look at the problem

$$
4 \frac{1}{5} \quad \text { x } \quad 2 \frac{3}{7}
$$

Step 3 Multiply the improper fractions

$$
\frac{21}{5} \times \frac{17}{7}=\frac{357}{35}
$$

Step 2 Change the mixed numbers to improper fractions

$$
\begin{aligned}
& 4 \frac{1}{5}=\frac{21}{5} \\
& 2 \frac{3}{7}=\frac{17}{7}
\end{aligned}
$$

Step 4 Change to a mixed number and simplify the fraction if possible

$$
\frac{357}{35}=10 \frac{7}{35}=10 \frac{1}{5}
$$

Dividing Fractions

Step 1 Look at the problem

Step 2 Change the mixed numbers to improper fractions

$$
\frac{1}{5} \div \frac{3}{7} \quad \text { The reciprocal of } \frac{3}{7} \text { is } \frac{7}{3}
$$

Step 3 Multiply the fractions

$$
\frac{1}{5} \times \frac{7}{3}=\frac{7}{15}
$$

Step 4 simplify the fraction if possible.

7
15

* $\quad 7$ cannot be simplified 15

Dividing Mixed Numbers

Step 1 Look at the problem

Step 2 Change the mixed numbers to improper fractions

$$
\frac{16}{5} \div \frac{24}{7}
$$

Step 3 Find the reciprocal of the second fraction (divisor) and multiply

$$
\frac{16}{5} \times \frac{7}{24}=\frac{112}{120}
$$

Step 4 simplify the fraction if possible.

The reciprocal of $\frac{24}{7}$ is $\frac{7}{24}$

* 1 / 5 cannot be simplified

