Rules for Finding Equivalent Fractions

Multiplication Rule

To find an equivalent fraction, multiply both the numerator and the denominator of the fraction by a number greater than zero .

Models for $\frac{1}{3}$	Models for $\frac{3}{4}$	Models for $\frac{4}{5}$
$\frac{1*2}{3*2} = \frac{2}{6}$	$\frac{3*2}{4*2} = \frac{6}{8}$	$\frac{4*2}{5*2} = \frac{8}{10}$
$\frac{1*3}{3*3} = \frac{3}{9}$	$\frac{3*3}{4*3} = \frac{9}{12}$	$\frac{4*3}{5*3} = \frac{12}{15}$
$\frac{1*4}{3*4} = \frac{4}{12}$	$\frac{3*4}{4*4} = \frac{12}{16}$	$\frac{4*4}{5*4} = \frac{16}{20}$

Division Rule

To find an equivalent fraction, divide the numerator and the denominator of the fraction by the same number.

 $\frac{3 \div 3}{9 \div 3} = \frac{1}{3} \qquad \frac{6 \div 2}{8 \div 2} = \frac{3}{4} \qquad \frac{16 \div 4}{20 \div 4} = \frac{4}{5} \qquad \frac{16 \div 2}{20 \div 2} = \frac{8}{10}$