Rules for Finding Equivalent Fractions

Multiplication Rule

To find an equivalent fraction, multiply both the numerator and the denominator of the fraction by a number greater than zero .

Models for $\frac{\mathbf{1}}{\mathbf{3}}$	Models for $\frac{\mathbf{3}}{\mathbf{4}}$	Models for $\frac{\mathbf{4}}{\mathbf{5}}$
$\frac{1 * 2}{3 * 2}=\frac{2}{6}$	$\frac{3 * 2}{4 * 2}=\frac{6}{8}$	$\frac{4 * 2}{5 * 2}=\frac{8}{10}$
$\frac{1 * 3}{3 * 3}=\frac{3}{9}$	$\frac{3 * 3}{4 * 3}=\frac{9}{12}$	$\frac{4 * 3}{5 * 3}=\frac{12}{15}$
$\frac{1 * 4}{3 * 4}=\frac{4}{12}$	$\frac{3 * 4}{4 * 4}=\frac{12}{16}$	$\frac{4 * 4}{5 * 4}=\frac{16}{20}$

Division Rule

To find an equivalent fraction, divide the numerator and the denominator of the fraction by the same number.

$$
\frac{3 \div 3}{9 \div 3}=\frac{1}{3} \quad \frac{6 \div 2}{8 \div 2}=\frac{3}{4} \quad \frac{16 \div 4}{20 \div 4}=\frac{4}{5} \quad \frac{16 \div 2}{20 \div 2}=\frac{8}{10}
$$

